
RunSafe Security 1RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RunSafe Security
Safety of Flight
Approach

RunSafeSecurity.com

RunSafe Security 2RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

Table of Contents

03 Executive Summary

04 Cyber Security – The Threat

05 RunSafe Protect – How it Works

08 RunSafe Protect Qualification – Development Tool

10 RunSafe Protect Certification – Airborne Software

12 RunSafe Protect Certification – Airworthiness Security

RunSafe Security 3RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

Executive Summary

RunSafe’s product, RunSafe Protect, will be certifiable

for flight safety at the highest level through DO-178C

at DAL A and qualifiable by DO-330 at TQL 1.

There are two components of RunSafe Protect.

The first operates during compilation, and is used

in a Computer Software Configuration Item (CSCI)

development environment, while the other operates

during software execution. The development tool

takes the CSCI source code as input and outputs

an equivalent binary with RunSafe metadata. The

airborne software is the compiled binary along with

the RunSafe Protect library.

When loaded, the binary’s functions are relocated

deterministically with a specific seed. The

development component will be qualifiable as a tool

at level 1, and the execution component will

be certifiable at design assurance level A. The plan

outlined in this document, put together with the help

of avionics safety experts at AFuzion, explains how

RunSafe intends to reach this goal.

RunSafe Security 4RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

Cyber Security – The Threat

Foundational software, especially those running

critical infrastructures, are built on the backbones

of C and C++. These languages, while powerful,

have an Achilles’ heel: vulnerabilities arising from

their handling of memory. According to the NSA’s

advisory on memory safety, 70% of both Google’s and

Microsoft’s security fixes are memory safety related¹.

Such missteps can serve as exploitable vulnerabilities

for those with ill intent as evidenced by MITRE’s Top

25 Most Dangerous Software Weaknesses which had

memory safety as number 1 (CWE-787), 3 of the top

10, and 7 of the top 25².

A key concern here is the inherent predictability

within these languages. Without RunSafe, when a bad

actor finds memory vulnerabilities in one software

binary, they are able to develop an exploit that works

anywhere that binary is deployed. This isn’t just a bug;

it’s a golden ticket for those with malicious intent.

With attackers constantly improving their binary

analysis tooling and the increasing reliance on open

source code, attackers have more opportunities to

find these vulnerabilities than ever.

To tackle this, it’s not enough to just patch these

memory-based vulnerabilities. Instead, the approach

needs to be more strategic.

RunSafe Protect improves unpredictability by

changing how software interacts with memory and

introducing relocations into function loads. This

makes each software instance unique, diminishing the

chances of a single exploit affecting everything. It also

makes it incredibly difficult to develop an exploit from

a RunSafe protected binary.

RunSafe Protect is designed to address several of the

common weaknesses and vulnerabilities identified

by NIST/MITRE. The weaknesses and vulnerabilities

addressed by RunSafe are elaborated in the tool

qualification package that is provided to the CSCI

developer. Not only does the package provide

information to describe the anticipated threat, but

it also describes how the RunSafe Protect product is

designed to address these weaknesses/vulnerabilities

via its relocation features. The information needed to

describe RunSafe’s security features will be provided

as a set of shell documents. These documents provide

the evidence needed to show that using RunSafe

Protect satisfies all the objectives and activities called

for by DO-326/356 and described in section 6 below.

¹https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-howto-

protect-against-software-memory-safety-issues/

²https://cwe.mitre.org/top25/

RunSafe Security 5RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RunSafe Protect – How it Works

RunSafe Protect hardens software by relocating

where functions load into memory uniquely for every

software load for each instance deployed.

This software diversity denies attackers the ability to

exploit memory-based weaknesses in software, which

comprise nearly 70% of vulnerabilities in compiled

code. Since RunSafe Protect does not change any

lines of source code in the CSCI product, there is

no change in system performance and no change in

functionality.

a. Development Component:

When RunSafe Protect is built into software, the

attacker cannot reliably exploit the protected

software because the code they need to execute

is never in the same place twice. Additionally, any

failed attempts to exploit RunSafe Protect-protected

software result in the program crashing. When

the software is launched again, the information an

attacker could gain from the previous failed exploit

attempt is not useful because the program will be

relocated again.

RunSafe Protect allows a user to use their existing

compiler and linker. RunSafe Protect sits in front of

the linker, first making the modifications needed, and

then calling the existing linker. This process can be

seen in the figure below. The top path through the

process is what a normal build looks like, abstracting

away the infinite complexities that build systems

bring. Protect has been proven to work with builds

as simple as a “Hello, World” example built with

GCC all the way to a complex Yocto-based build

using different compilers per project. With RunSafe

Protect in the mix, compilation takes a slightly

different path at the linking stage, where RunSafe

injects information needed to accomplish our runtime

relocation. The protected binary has the same control

flow as the unprotected binary.

This part of RunSafe Protect is utilized during the

development process in the CSCI producer’s labs.

Therefore, this portion of RunSafe Protect will be

qualifiable as a tool under DO-330 at TQL-1.

RunSafe Security 6RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

b. Airborne Component

The next step of RunSafe Protect takes place when

the protected software is loaded into RAM on an

airborne system. The software will be certifiable

under DO-178C since it is airborne software.

The diagram below details how RunSafe Protect

creates a unique memory layout for each binary and

shared object when integrated into a build process.

The diagram walks through the process setup for a

HelloWorld application without RunSafe Protect (1)

and with RunSafe Protect (2a, 2b, and 2c).

	• In 1, the HelloWorld application is copied into

memory in the normal fashion for the operating

system. The program’s entry point is identified in

the application’s header information. Execution

is then transferred to the function identified by

the entry point, Function 3 in this case, located at

0x2a0.

	• 2a shows the same program with RunSafe Protect

included at compilation. The program has several

important differences:

	» (1) A new function, RandoMain, has been added

to the program. It is shown in the diagram as

LFR_Main.

	» (2, 3) The application has been linked against

liblfr.so. liblfr.so is RunSafe Protect’s library built

from a small code base (less than 20k lines of

code) and loaded onto the system.

	» RandoMain is the program’s new entry point.

	» Metadata has been added as a new section of

the ELF file. This metadata includes:

	› Start point for each function.

	› Size of each function, in bytes.

	› Location and type of any relocations that

need updating after relocation. These types of

relocations are finite and testable per system.

	• 2a references the first three steps of process

execution, once the OS’s normal process setup has

completed:

1.	 Execution is turned over to the new RandoMain

entry point, at 0xfe1. RandoMain is a stub

function that jumps to the relocation routine in

liblfr.so, RunSafe Protect’s library.

2.	 The relocation routine then relocates individual

functions in memory, using the metadata

embedded in the file. Next, a customer-defined

seed deterministically relocates the functions and

places them in their new memory locations.

3.	 After relocating the code in memory, liblfr.so goes

through all relocatable addresses and updates

them to point to their new location in memory;

e.g. references to Function 1 (F1) will be adjusted

from 0x1a0 to 0x3a0. The diagram’s 2b shows the

application after all of the parts have been moved

around. After the relocation, the protected

software has the same memory footprint as the

original software. RunSafe Protect does not

make any changes to the data locations, only the

function locations.

RunSafe Security 7RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

4.	 The final process execution step, shown in the diagram at 2c, is to transfer execution to the original

entry point, Function 3. This will begin the normal, developer-intended functionality of the RunSafe

Protect-protected program. Once execution transfers to the original entry point, RunSafe Protect is

no longer active in the program’s execution and there is no runtime performance overhead.

RunSafe Security 8RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RunSafe Protect Qualification –
Development Tool
RunSafe is certifying RunSafe Protect as a TQL-

1 tool and airborne software at DAL-A. This will

allow RunSafe Protect to be used as part of the

development environment for any CSCI regardless of

DAL (A-D).

TQL-1 is the most demanding level defined by DO-

330. RunSafe Protect’s developmental tool must

be qualified at this level because the tool can have

the most disastrous effect on flight safety. It could

introduce a defect into DAL A airborne software that

could cause the software to fail in flight causing a

catastrophic failure of the aircraft, therefore meeting

criteria 1.

Development per TQL-1 demands that all objectives

(76) and activities delineated in DO-330 be satisfied,

many of them with engineering independence.

Under the RunSafe strategy, the current version of

RunSafe Protect is viewed as a working prototype.

Because there is a demonstrated solution, no

technical issues are anticipated. Development

artifacts that are available will be used, but they

are only used if appropriate. If the artifacts do not

meet the rigorous expectations of DO-330, then the

artifact will be recreated per DO-330, using current

data as a guide.

Because DO-330 is more systematic and rigorous, it is

possiblethat gaps in the current implementation may

be discovered. These gaps will be addressed during

the TQL-1 certification of RunSafe Protect.

The following expectations of DO-330 will be

followed rigorously:

	• Development plans defining the approach used to

certify RunSafe Protect will be created.

	• Plans and standards will be vetted and approved,

then followed diligently.

	• Work products needed to qualify RunSafe Protect

to TQL-1 will be produced, verified, and controlled.

	» Tool and User Operational Requirements will

be defined.

	» Design data will be captured. All required data

and control flow analyses will be accomplished

and recorded. Assumptions/restrictions on the

use of RunSafe Protect will be identified and

captured for later use (e.g., if RunSafe Protect

does not address certain language constructs

or assumes a specific CSCI development

environment or target environment).

	» Implementation activities will translate the

defined Low-Level Requirements (LLRs) into

code.

RunSafe Security 9RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

	» Developed code will be robustly tested to

show that it satisfies all requirements, does

not include dead code, and meets all DO-330

structural coverage objectives.

	» Engineering independence will be used to verify

all work products.

	» A Conformity Review will be held/ recorded

to show that all data and work products were

produced as planned, all problem reports have

been addressed, and the RunSafe Protect tool

can be consistently produced for delivery to a

CSCI developer.

	» Configuration Management records will be

captured to show that the integral process was

consistently applied.

	» Process Assurance records will be captured to

show that approved plans were consistently

followed.

Since RunSafe Protect is intended to satisfy a variety

of development environments, it is anticipated that

there will be some differences in RunSafe Protect

versions. These will be addressed by configuration

parameters.

If a tool used in CSCI development needs to be

qualified, the CSCI developer must provide a Tool

Qualification Plan (TQP) that shows that the tool

meets the required Tool Qualification Level (TQL)

and works as expected in the CSCI developer’s

environment.

Data demonstrating the rigorous TQL- 1 development

will be assembled into a qualification package for use

by a CSCI developer.

The RunSafe Protect tool qualification package

will provide draft materials to be tailored by the

CSCI developer. This will include data proving the

development pedigree of RunSafe Protect described

above. It also will include draft materials to be

reviewed/accepted by the CSCI developer including

Tool Operational Requirements (TOR), a Tool

Qualification Plan (TQP), and a set of verification test

cases that show RunSafe Protect satisfies the TOR in

the CSCI developer’s environment.

It is anticipated that draft work products will be

finalized by the CSCI developer and placed under

developer Configuration Management along with the

other material in the RunSafe Protect qualification

package.

Any issues encountered during the the application of

RunSafe Protect to the CSCI developer’s environment

or impacts to RunSafe provided materials are to be

elevated to RunSafe for resolution.

As with any other tool requiring qualification, the

CSCI developer is responsible for using the tool

correctly, properly controlling it, and gaining approval

of the TQP. Qualification also requires that tools are

used correctly. This is assured by CSCI developer

quality assurance.

RunSafe Security 10RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

Under DO-178C, the CSCI developer is responsible

for creating a CSCI that meets allocated system

requirements. The CSCI developer proposes and

gains approval of the approach they will follow to

satisfy DO-178C objectives (vary by DAL) in their

Plan for Software Aspects of Certification (PSAC).

When developing a CSCI, DO-178C calls for:

	• Comprehensive detailed planning of the

certification liaison, software quality assurance,

configuration management, development, and

verification.

	• Complete definition of the high-level requirements

the CSCI must satisfy and the low-level

requirements that derive from those high-level

requirements.

	• Confirmation that all code in the CSCI has a solid

rationale for being there.

	• Consistent application of standards for

requirements, design, and code.

	• Verification of work products and systematic

correction of issues identified.

	• Elaboration of Parameter Data Items and

confirmation that the CSCI functions correctly for

normal and abnormal values of its elements.

	• Qualification of any tools where the output is not

verified manually.

RunSafe Protect is novel in that it alters the image

of the CSCI’s executable. Alterations invalidate the

formal test (“run for score”) that shows the CSCI

meets DO-178C expectations (100% requirements

coverage, structural coverage requirements, and

evidence there is no unnecessary code). Therefore,

the “Run for Score” testing must be performed AFTER

RunSafe Protect has been applied.

RunSafe Protect also adds functionality/features

to the CSCI under development. Since DO- 178C

mandates that there must be a trace from system

requirements to software High- Level Requirements

(HLRs) to software LLRs and to test cases/procedures

that prove these requirements were satisfied, the

RunSafe Protect qualification package will include

proposed materials to be integrated in the CSCI

developer’s data. This includes:

	• A proposed system requirement that calls for

cybersecurity attacks to be mitigated.

	• A proposed set of Software HLRs defining the

features the CSCI implementation will have

(e.g., relocatability). The Software HLRs must be

traced to the system requirement to mitigate

cyberattacks.

	• A proposed set of requirements, design, and

coding standards for code alterations.

RunSafe Protect Certification –
Airborne Software

RunSafe Security 11RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

	• A proposed set of Software LLRs that delineate

the features that must be added to each CSCI

unit. These LLRs must be traced to both the units

affected and the Software HLRs.

	• Test cases that show altered code works as

expected (to relocate functions when loaded).

	• Trace data.

It is expected that the seed value generated for

each load, will be treated as a Parameter Data Item

(PDI) under DO- 178C. The qualification package

will include draft materials to be integrated into the

CSCI developer’s material. This material will provide

a proposed CSCI plan and development artifact

changes to address the altered/added code resulting

from RunSafe Protect use.

As indicated above, RunSafe Protect takes a

set of source code as its input and alters it

so that it will relocate itself in its allocated memory

space when loaded. The relocation is based on a seed.

The seed (a 64-bit string) can be any value from all 0’s

to all 1’s. Relocation is deterministic for a given seed

value, but since it is randomly selected, the likelihood

of identical values is small.

RunSafe Security 12RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RunSafe Protect Certification –
Airworthiness Security
The focus of DO-326 and DO-356 is an integrated

approach to preventing and mitigating cyberattacks.

 A strategy cannot be developed without

understanding the system and the environment in

which it will be used and maintained. RunSafe Protect

would be a part of that security strategy.

DO-326/356 is structured around a set of principles.

RunSafe helps to satisfy two of those 14 principles:

	• Principle 1 - Defense in Depth: The idea behind

Defense in Depth is that if one protection fails,

the second will hopefully be effective. Because

RunSafe surrounds the entire product CSCI with

its protective shield, it can form one layer of the

Defense in Depth strategy. This allows the CSCI

developer to focus attention on project’s peculiar

defense strategies.

	• Principle 2 - Ease of Maintenance: RunSafe makes

maintenance of the CSCI and its security features

easier by eliminating maintenance of the RunSafe

tool. As a COTS TQL-1 tool, RunSafe Protect

maintenance responsibilities are not assigned to

the CSCI developer, but to RunSafe itself. RunSafe

Protect is deployed with effective tool training,

support, and documentation. RunSafe Protect is

designed to be integrated into the software build

process. There is no action on the part of the CSCI

developer to alter or configure RunSafe Protect.

RunSafe will provide documentation to satisfy

objectives and activities enumerated by DO-

326/356. The information can be extracted

to merge into CSCI developer format, or the shell

documents can become an early draft of DO 326/356

required documents, thus giving the CSCI developer a

model to follow.

Shell documentation that is provided aligns with

deliverables expected by DO-326/356. This includes:

	• Plan for Security Aspects of Certification

	• Plan for Security Aspects of Certification Summary

	• Aircraft/System Security Risk Assessment

	• Allocated System, High Level Software, Low Level

Software, and Derived requirements

	• Tool Qualification Plan, standards, test cases/

procedures, validation results, and verification

results (Review, Analysis, Test) and supporting

trace data

	• Audit and CM records

	» These are particular to RunSafe Protect’s

implementation and qualification. However, the

package forms a model that can be extended

to other CSCIs and CSCI functionality, because

it provides a comprehensive (though narrowly

focused) example of how each of the objectives

called for by DO-326/356 is satisfied.

	• Operational guidance

RunSafe Security 13RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RunSafe as an organization, is committed to helping CSCI developers successfully apply RunSafe Protect in their

environment and address issues should they arise.

Doug Britton, EVP, RunSafe Security

Doug@RunSafeSecurity.com, 571-250-5941

Kathryn Fejer, Senior Software Engineer, RunSafe Security

Katie@RunSafeSecurity.com, 224-639-2795

Kenneth Hebert, Ph.D. CSM, AFuzion, Technical Director, Process Manager, Senior Trainer

Kenneth.Hebert@AFuzion.com, 505-226-8181

Jonathan Lynch, AFuzion, FAA DER & Commercial Pilot/Instructor

Jon.Lynch@AFuzion.com, 505-205-9800

RunSafe Security

ABOUT RUNSAFE SECURITY, INC.

RunSafe Security is the pioneer of a unique cyberhardening
technology designed to disrupt attackers and protect vulnerable
embedded systems and devices. With the ability to make each
device functionally identical but logically unique, RunSafe Security
renders threats inert by eliminating attack vectors, significantly
reducing vulnerabilities, and denying malware the uniformity
required to propagate. Based in McLean, Virginia, with an office
in Huntsville, Alabama, RunSafe Security’s customers span
the Industrial Internet of Things (IIoT), critical infrastructure,
automotive, and national security industries.

www.RunSafeSecurity.com

571.441.5076

Sales@RunSafeSecurity.com

