SECURITY

RunSafe Security
Safety of Flight

Approach

RunSafeSecurity.com

Table of Contents

03 Executive Summary

04 Cyber Security - The Threat

05 RunSafe Protect - How it Works

08 RunSafe Protect Qualification - Development Tool
10 RunSafe Protect Certification - Airborne Software

12 RunSafe Protect Certification - Airworthiness Security

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

Executive Summary

RunSafe’s product, RunSafe Protect, will be certifiable
for flight safety at the highest level through DO-178C
at DAL A and qualifiable by DO-330 at TQL 1.

There are two components of RunSafe Protect.

The first operates during compilation, and is used

in a Computer Software Configuration Item (CSCI)
development environment, while the other operates
during software execution. The development tool
takes the CSCl source code as input and outputs

an equivalent binary with RunSafe metadata. The
airborne software is the compiled binary along with
the RunSafe Protect library.

Oxb6e8d1e8 ‘ '
Oxb6ea5888 [= =3

Oxb6eb1bdd jm
Oxb6ebdf28 jm = =
Oxb6eca278 [5 =

Oxb6ed65c8 [= =

Oxb6ee2918 jm - o

ORIGINAL ASLR
SOURCE

RUNSAFE PROTECT:

When loaded, the binary’s functions are relocated
deterministically with a specific seed. The
development component will be qualifiable as a tool
at level 1, and the execution component will

be certifiable at design assurance level A. The plan
outlined in this document, put together with the help
of avionics safety experts at AFuzion, explains how

RunSafe intends to reach this goal.

ORIGINAL

HARDENED

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

Cyber Security - The Threat

Foundational software, especially those running
critical infrastructures, are built on the backbones

of C and C++. These languages, while powerful,

have an Achilles’ heel: vulnerabilities arising from
their handling of memory. According to the NSA's
advisory on memory safety, 70% of both Google’s and
Microsoft’s security fixes are memory safety related”.
Such missteps can serve as exploitable vulnerabilities
for those with ill intent as evidenced by MITRE’s Top
25 Most Dangerous Software Weaknesses which had
memory safety as number 1 (CWE-787), 3 of the top
10, and 7 of the top 25>

A key concern here is the inherent predictability
within these languages. Without RunSafe, when a bad
actor finds memory vulnerabilities in one software
binary, they are able to develop an exploit that works
anywhere that binary is deployed. This isn’'t just a bug;
it's a golden ticket for those with malicious intent.
With attackers constantly improving their binary
analysis tooling and the increasing reliance on open
source code, attackers have more opportunities to

find these vulnerabilities than ever.

To tackle this, it's not enough to just patch these
memory-based vulnerabilities. Instead, the approach
needs to be more strategic.

RunSafe Protect improves unpredictability by
changing how software interacts with memory and
introducing relocations into function loads. This
makes each software instance unique, diminishing the
chances of a single exploit affecting everything. It also
makes it incredibly difficult to develop an exploit from

a RunSafe protected binary.

RunSafe Protect is designed to address several of the
common weaknesses and vulnerabilities identified

by NIST/MITRE. The weaknesses and vulnerabilities
addressed by RunSafe are elaborated in the tool
qualification package that is provided to the CSCI
developer. Not only does the package provide
information to describe the anticipated threat, but

it also describes how the RunSafe Protect product is
designed to address these weaknesses/vulnerabilities
via its relocation features. The information needed to
describe RunSafe’s security features will be provided
as a set of shell documents. These documents provide
the evidence needed to show that using RunSafe
Protect satisfies all the objectives and activities called
for by DO-326/356 and described in section 6 below.

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RunSafe Protect - How it Works

RunSafe Protect hardens software by relocating
where functions load into memory uniquely for every

software load for each instance deployed.

This software diversity denies attackers the ability to
exploit memory-based weaknesses in software, which
comprise nearly 70% of vulnerabilities in compiled
code. Since RunSafe Protect does not change any
lines of source code in the CSCI product, there is

no change in system performance and no change in
functionality.

a. Development Component:

When RunSafe Protect is built into software, the
attacker cannot reliably exploit the protected
software because the code they need to execute

is never in the same place twice. Additionally, any
failed attempts to exploit RunSafe Protect-protected
software result in the program crashing. When

the software is launched again, the information an
attacker could gain from the previous failed exploit
attempt is not useful because the program will be

relocated again.

SOURCE SYSTEM

FILES COMPILER OBJECT FILES

SOURCE COMPILER SYSTEM
FILES WRAPPER COMPILER

RunSafe Security

RELOCATABLE

RELOCATABLE
OBJECT FILES

RunSafe Protect allows a user to use their existing
compiler and linker. RunSafe Protect sits in front of
the linker, first making the modifications needed, and
then calling the existing linker. This process can be
seen in the figure below. The top path through the
process is what a normal build looks like, abstracting
away the infinite complexities that build systems
bring. Protect has been proven to work with builds

as simple as a “Hello, World” example built with

GCC all the way to a complex Yocto-based build

using different compilers per project. With RunSafe
Protect in the mix, compilation takes a slightly
different path at the linking stage, where RunSafe
injects information needed to accomplish our runtime
relocation. The protected binary has the same control

flow as the unprotected binary.

This part of RunSafe Protect is utilized during the
development process in the CSCI producer’s labs.
Therefore, this portion of RunSafe Protect will be
qualifiable as a tool under DO-330 at TQL-1.

SYSTEM UNPROTECTED
LINKER BINARY

REWRITTEN SYSTEM PROTECTED
OBJECT FILES LINKER BINARY

RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

b. Airborne Component

The next step of RunSafe Protect takes place when
the protected software is loaded into RAM on an
airborne system. The software will be certifiable

under DO-178C since it is airborne software.

The diagram below details how RunSafe Protect
creates a unique memory layout for each binary and
shared object when integrated into a build process.
The diagram walks through the process setup for a
HelloWorld application without RunSafe Protect (1)
and with RunSafe Protect (2a, 2b, and 2c).

In 1, the HelloWorld application is copied into
memory in the normal fashion for the operating
system. The program’s entry point is identified in
the application’s header information. Execution
is then transferred to the function identified by
the entry point, Function 3 in this case, located at
0x2a0.

2a shows the same program with RunSafe Protect
included at compilation. The program has several
important differences:

(1) A new function, RandoMain, has been added
to the program. It is shown in the diagram as
LFR_Main.

(2, 3) The application has been linked against
liblfr.so. liblfr.so is RunSafe Protect’s library built
from a small code base (less than 20k lines of
code) and loaded onto the system.

RandoMain is the program’s new entry point.
Metadata has been added as a new section of

the ELF file. This metadata includes:

Start point for each function.

Size of each function, in bytes.

Location and type of any relocations that
need updating after relocation. These types of
relocations are finite and testable per system.

2areferences the first three steps of process
execution, once the OS’s normal process setup has
completed:

Execution is turned over to the new RandoMain
entry point, at Oxfe1l. RandoMain is a stub
function that jumps to the relocation routine in
liblfr.so, RunSafe Protect’s library.

The relocation routine then relocates individual
functions in memory, using the metadata
embedded in the file. Next, a customer-defined
seed deterministically relocates the functions and
places them in their new memory locations.

After relocating the code in memory, liblfr.so goes
through all relocatable addresses and updates
them to point to their new location in memory;
e.g.references to Function 1 (F1) will be adjusted
from Ox1a0 to Ox3a0. The diagram’s 2b shows the
application after all of the parts have been moved
around. After the relocation, the protected
software has the same memory footprint as the
original software. RunSafe Protect does not

make any changes to the data locations, only the

function locations.

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

4. The final process execution step, shown in the diagram at 2c¢, is to transfer execution to the original
entry point, Function 3. This will begin the normal, developer-intended functionality of the RunSafe
Protect-protected program. Once execution transfers to the original entry point, RunSafe Protect is

no longer active in the program’s execution and there is no runtime performance overhead.

2b) Randomized &

1) HelloWorld 2a) HelloWorld (LFR) Patchedaur

2c) Resume execution

i

\

i
Jul

New shared,/

library

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RunSafe Protect Qualification -
Development Tool

RunSafe is certifying RunSafe Protect as a TQL-

1tool and airborne software at DAL-A. This will

allow RunSafe Protect to be used as part of the
development environment for any CSCl regardless of
DAL (A-D).

TQL-1is the most demanding level defined by DO-
330. RunSafe Protect’s developmental tool must

be qualified at this level because the tool can have
the most disastrous effect on flight safety. It could
introduce a defect into DAL A airborne software that
could cause the software to fail in flight causing a
catastrophic failure of the aircraft, therefore meeting

criteria 1.

Development per TQL-1 demands that all objectives
(76) and activities delineated in DO-330 be satisfied,
many of them with engineering independence.

Under the RunSafe strategy, the current version of
RunSafe Protect is viewed as a working prototype.
Because there is a demonstrated solution, no
technical issues are anticipated. Development
artifacts that are available will be used, but they

are only used if appropriate. If the artifacts do not
meet the rigorous expectations of DO-330, then the
artifact will be recreated per DO-330, using current
data as a guide.

Because DO-330 is more systematic and rigorous, it is

possiblethat gaps in the current implementation may
be discovered. These gaps will be addressed during
the TQL-1 certification of RunSafe Protect.

The following expectations of DO-330 will be
followed rigorously:

Development plans defining the approach used to

certify RunSafe Protect will be created.

Plans and standards will be vetted and approved,
then followed diligently.

Work products needed to qualify RunSafe Protect
to TQL-1 will be produced, verified, and controlled.

Tool and User Operational Requirements will
be defined.

Design data will be captured. All required data
and control flow analyses will be accomplished
and recorded. Assumptions/restrictions on the
use of RunSafe Protect will be identified and
captured for later use (e.g., if RunSafe Protect
does not address certain language constructs
or assumes a specific CSCl development
environment or target environment).

Implementation activities will translate the
defined Low-Level Requirements (LLRs) into
code.

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

Developed code will be robustly tested to
show that it satisfies all requirements, does
not include dead code, and meets all DO-330
structural coverage objectives.

Engineering independence will be used to verify
all work products.

A Conformity Review will be held/ recorded
to show that all data and work products were
produced as planned, all problem reports have
been addressed, and the RunSafe Protect tool
can be consistently produced for delivery to a

CSCl developer.

Configuration Management records will be
captured to show that the integral process was
consistently applied.

Process Assurance records will be captured to
show that approved plans were consistently

followed.

Since RunSafe Protect is intended to satisfy a variety
of development environments, it is anticipated that
there will be some differences in RunSafe Protect
versions. These will be addressed by configuration

parameters.

If atool used in CSCI development needs to be
qualified, the CSCI developer must provide a Tool
Qualification Plan (TQP) that shows that the tool
meets the required Tool Qualification Level (TQL)
and works as expected in the CSCI developer’s

environment.

Data demonstrating the rigorous TQL- 1 development

will be assembled into a qualification package for use
by a CSCI developer.

The RunSafe Protect tool qualification package

will provide draft materials to be tailored by the
CSCl developer. This will include data proving the
development pedigree of RunSafe Protect described
above. It also will include draft materials to be
reviewed/accepted by the CSCI developer including
Tool Operational Requirements (TOR), a Tool
Qualification Plan (TQP), and a set of verification test
cases that show RunSafe Protect satisfies the TOR in
the CSCl developer’s environment.

It is anticipated that draft work products will be
finalized by the CSCI developer and placed under
developer Configuration Management along with the
other material in the RunSafe Protect qualification
package.

Any issues encountered during the the application of
RunSafe Protect to the CSCI developer’s environment
or impacts to RunSafe provided materials are to be

elevated to RunSafe for resolution.

As with any other tool requiring qualification, the
CSCl developer is responsible for using the tool
correctly, properly controlling it, and gaining approval
of the TQP. Qualification also requires that tools are
used correctly. This is assured by CSCI developer
quality assurance.

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RunSafe Protect Certification -
Airborne Software

Under DO-178C, the CSCl developer is responsible
for creating a CSCl that meets allocated system
requirements. The CSCI developer proposes and
gains approval of the approach they will follow to
satisfy DO-178C objectives (vary by DAL) in their
Plan for Software Aspects of Certification (PSAC).
When developing a CSCI, DO-178C calls for:

Comprehensive detailed planning of the
certification liaison, software quality assurance,
configuration management, development, and

verification.

Complete definition of the high-level requirements
the CSCI must satisfy and the low-level
requirements that derive from those high-level

requirements.

Confirmation that all code in the CSCl has a solid
rationale for being there.

Consistent application of standards for
requirements, design, and code.

Verification of work products and systematic

correction of issues identified.

Elaboration of Parameter Data Items and
confirmation that the CSCI functions correctly for

normal and abnormal values of its elements.

Qualification of any tools where the output is not

verified manually.

RunSafe Protect is novel in that it alters the image

of the CSClI’s executable. Alterations invalidate the
formal test (“run for score”) that shows the CSCI
meets DO-178C expectations (100% requirements
coverage, structural coverage requirements, and
evidence there is no unnecessary code). Therefore,
the “Run for Score” testing must be performed AFTER
RunSafe Protect has been applied.

RunSafe Protect also adds functionality/features

to the CSCl under development. Since DO- 178C
mandates that there must be a trace from system
requirements to software High- Level Requirements
(HLRs) to software LLRs and to test cases/procedures
that prove these requirements were satisfied, the
RunSafe Protect qualification package will include
proposed materials to be integrated in the CSCI
developer’s data. This includes:

A proposed system requirement that calls for
cybersecurity attacks to be mitigated.

A proposed set of Software HLRs defining the
features the CSCl implementation will have
(e.g., relocatability). The Software HLRs must be
traced to the system requirement to mitigate

cyberattacks.

A proposed set of requirements, design, and

coding standards for code alterations.

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

A proposed set of Software LLRs that delineate As indicated above, RunSafe Protect takes a

the features that must be added to each CSCI set of source code as its input and alters it

unit. These LLRs must be traced to both the units so that it will relocate itself in its allocated memory
affected and the Software HLRs. space when loaded. The relocation is based on a seed.
Test cases that show altered code works as The seed (a 64-bit string) can be any value from all 0’s
expected (to relocate functions when loaded). to all 1’s. Relocation is deterministic for a given seed
Trace data. value, but since it is randomly selected, the likelihood

of identical values is small.

It is expected that the seed value generated for

each load, will be treated as a Parameter Data Item
(PDI) under DO- 178C. The qualification package
will include draft materials to be integrated into the
CSCl developer’s material. This material will provide
a proposed CSCl plan and development artifact
changes to address the altered/added code resulting
from RunSafe Protect use.

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RunSafe Protect Certification -
Airworthiness Security

The focus of DO-326 and DO-356 is an integrated
approach to preventing and mitigating cyberattacks.
A strategy cannot be developed without
understanding the system and the environment in
which it will be used and maintained. RunSafe Protect
would be a part of that security strategy.

DO-326/356is structured around a set of principles.
RunSafe helps to satisfy two of those 14 principles:

Principle 1 - Defense in Depth: The idea behind
Defense in Depth is that if one protection fails,
the second will hopefully be effective. Because
RunSafe surrounds the entire product CSCI with
its protective shield, it can form one layer of the
Defense in Depth strategy. This allows the CSCI
developer to focus attention on project’s peculiar

defense strategies.

Principle 2 - Ease of Maintenance: RunSafe makes
maintenance of the CSCI and its security features
easier by eliminating maintenance of the RunSafe
tool. As a COTS TQL-1 tool, RunSafe Protect
maintenance responsibilities are not assigned to
the CSCI developer, but to RunSafe itself. RunSafe
Protect is deployed with effective tool training,
support, and documentation. RunSafe Protect is
designed to be integrated into the software build
process. There is no action on the part of the CSCI
developer to alter or configure RunSafe Protect.

RunSafe will provide documentation to satisfy
objectives and activities enumerated by DO-
326/356. The information can be extracted

to merge into CSClI developer format, or the shell
documents can become an early draft of DO 326/356
required documents, thus giving the CSCl developer a
model to follow.

Shell documentation that is provided aligns with
deliverables expected by DO-326/356. This includes:

Plan for Security Aspects of Certification
Plan for Security Aspects of Certification Summary
Aircraft/System Security Risk Assessment

Allocated System, High Level Software, Low Level
Software, and Derived requirements

Tool Qualification Plan, standards, test cases/
procedures, validation results, and verification
results (Review, Analysis, Test) and supporting

trace data

Audit and CM records

These are particular to RunSafe Protect’s
implementation and qualification. However, the
package forms a model that can be extended

to other CSCls and CSCI functionality, because
it provides a comprehensive (though narrowly
focused) example of how each of the objectives
called for by DO-326/356 is satisfied.

Operational guidance

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RunSafe as an organization, is committed to helping CSCI developers successfully apply RunSafe Protect in their
environment and address issues should they arise. °

Doug Britton, EVP, RunSafe Security
Doug@RunSafeSecurity.com, 571-250-5941

Kathryn Fejer, Senior Software Engineer, RunSafe Security °
Katie@RunSafeSecurity.com, 224-639-2795

Kenneth Hebert, Ph.D. CSM, AFuzion, Technical Director, Process Manager, Senior Trainer
Kenneth.Hebert@AFuzion.com, 505-226-8181

Jonathan Lynch, AFuzion, FAA DER & Commercial Pilot/Instructor
Jon.Lynch@AFuzion.com, 505-205-9800

RunSafe Security RUNSAFE SECURITY SAFETY OF FLIGHT APPROACH

RUNSAFE

SECURITY

ABOUT RUNSAFE SECURITY, INC.

RunSafe Security is the pioneer of a unique cyberhardening
technology designed to disrupt attackers and protect vulnerable
embedded systems and devices. With the ability to make each
device functionally identical but logically unique, RunSafe Security
renders threats inert by eliminating attack vectors, significantly
reducing vulnerabilities, and denying malware the uniformity
required to propagate. Based in McLean, Virginia, with an office
in Huntsville, Alabama, RunSafe Security’s customers span

the Industrial Internet of Things (IloT), critical infrastructure,
automotive, and national security industries.

=
@

%

www.RunSafeSecurity.com
571.441.5076

Sales@RunSafeSecurity.com

