RUNSAFE

SECURITY

Safeguarding Code:
A Comprehensive Guide
to Addressing the
Memory Safety Crisis

RunSafeSecurity.com

Table of Contents

03 An Introduction to Memory Safety

04 Mitigating Memory Safety Vulnerabilities: Where to Start

05 Adopting Secure Code Standards and Memory Safe Languages

07 When Code Rewrites Are Impractical: Securing Legacy Systems Today
09 Tools and Techniques for Detecting Memory Safety Issues

11 The Future of Memory Safety: A Time for Action, Not Just Awareness

12 Further Resources and Glossary

RunSafe Security = SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

An Introduction to Memory Safety

Memory safety is a foundational aspect of software development,

referring to the protection of memory access operations against common
vulnerabilities like buffer overflows, dangling pointers, and memory leaks.
But while memory safety is a well-understood problem by both software
developers and policymakers alike, memory safety vulnerabilities have
persisted across the decades, from the infamous Morris Worm of 1988—
one of the first major cyber incidents—that exploited a buffer overflow
vulnerability to the present-day Volt Typhoon campaign leveraging memory
safety vulnerabilities to target critical infrastructure.

Memory safety vulnerabilities remain an issue for four reasons:

Critical infrastructure relies heavily on
systems written in memory-unsafe languages, primarily C and C++. The
codebase for a typical industrial control system can span millions of lines,
making comprehensive rewrites into memory-safe languages like Rust,
Go, or Javaimpractical.

Memory-safe languages often introduce
runtime overhead that may be unacceptable for performance-critical
systems, particularly in embedded environments with limited resources.

Modern software applications

are increasingly complex and distributed across diverse environments
(cloud, edge, 10T). Managing memory safety across these environments
while ensuring interoperability and performance remains a challenge.

Cyber adversaries continually
evolve their techniques to exploit memory safety vulnerabilities.
Zero-day exploits targeting memory flaws can have severe consequences
if not promptly identified and mitigated.

RunSafe Security

Despite the challenges, memory safety vulnerabilities must be addressed.
In 2022, the National Security Agency (NSA) issued guidance emphasizing
the severity of memory safety vulnerabilities, stating that they remain the
most readily exploitable category of software flaws. Additionally, MITRE’s
Common Weakness Enumeration (CWE) consistently ranks memory
corruption vulnerabilities among the top 25 most dangerous software
weaknesses.

Memory safety vulnerabilities in particular pose a substantial and pressing
threat to embedded software deployed across critical infrastructure, the
automotive industry, medical devices, and more. Malicious actors can exploit
these vulnerabilities to execute arbitrary code, compromise sensitive data, or
cause system crashes. When we think about these attacks in the context of
the energy grid, defense systems, and transportation, it’s clear that it’s time
to address the memory safety crisis once and for all.

This guide is designed to empower software developers, product managers,
and security professionals with the knowledge and tools needed to address
memory safety challenges to protect embedded systems today and into the
future.

We'll explore:
Strategies for transitioning to memory-safe architectures
Approaches for securing legacy systems

The role of automated tools and deploying protection at runtime to

prevent memory corruption

SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Mitigating Memory Safety Vulnerabilities:
Where to Start

In 2023, CISA and international cyber agencies published guidance as part Employing advanced static analysis tools

of their Secure by Design campaign on steps to take to address memory to identify potential memory safety violations during development.

safety vulnerabilities, including using memory safe programming languages

and writing and publishing memory safe roadmaps to “eliminate this class of In the next sections, we'll address the practicalities of transitioning to

vulnerability” memory-safe architectures and approaches to securing legacy systems
without code rewrites.

Following Secure by Design practices is an excellent approach, addressing

memory safety issues throughout the development process rather than

Examples of Memory Safety Vulnerabilities

bolting on security measures after the fact. The goal is to reduce the

likelihood of vulnerabilities by making security an inherent part of the system
BUFFER OVERFLOWS

A buffer overflow occurs when a program writes more data to a buffer than it can

architecture.

. . L hold, leading to adjacent memory being overwritten. This can cause unexpected
In the case of memory safety, Secure by Design often involves transitioning
behavior and provide an attack vector for malicious code execution.

USE-AFTER-FREE ERRORS

Use-After-Free errors occur when a program continues to use a pointer after the

to memory-safe languages like Rust and Go, which can drastically reduce
the risk of memory-related bugs. However, transitioning entire codebases to
these languages, which can take years and requires a significant amount of
. . R memory it references has been freed. This can lead to arbitrary code execution,
resources, is impractical for legacy systems and critical infrastructure. In the
data corruption, or system crashes.
MEMORY LEAKS

Memory leaks occur when a program fails to release memory that is no

interim, immediate solutions are needed to bridge the gap.

Organizations are adopting various approaches to address memory safety:
longer needed, leading to gradual memory consumption and potential system

slowdowns or crashes.
DANGLING POINTERS

Dangling pointers arise when pointers are left pointing to memory locations that

Identifying and rewriting critical components in
memory-safe languages like Rust.
Implementing Address Space Layout

L. . . have been deallocated, potentially leading to access of invalid memory.
Randomization (ASLR), Control Flow Integrity (CFl), and emerging

solutions like Load-Time Function Randomization (LFR).

RunSafe Security = SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Adopting Secure Code Standards and Memory

Safe Languages

Adopting strict coding standards, leveraging memory-safe programming
languages, and strategically migrating legacy code are vital steps to take
toward preventing memory safety vulnerabilities and securing software
systems. This section outlines these best practices.

Secure Code Standards and Guidelines

Adhering to coding standards and guidelines is fundamental to writing
secure code. These practices help ensure consistency, readability, and, most
importantly, security in software development.

Input validation

Always validate and sanitize input data to prevent buffer overflow and
injection attacks. Use libraries and frameworks that provide built-in input
validation mechanisms.

Memory management

Manage memory explicitly and avoid common pitfalls like buffer overflows,
dangling pointers, and memory leaks. Use static analysis tools to detect and
correct memory management issues early in the development cycle.

Code reviews
Conduct regular code reviews to catch potential vulnerabilities and enforce
coding standards. Incorporate security-focused code review checklists and

involve multiple reviewers with different expertise.

RunSafe Security

Use of libraries

Only use well-maintained and widely-used libraries that follow security best
practices. Keep dependencies updated to incorporate the latest security
patches.

Memory-Safe Programming Languages

Memory-safe programming languages are designed to prevent common
memory-related errors, reducing the risk of vulnerabilities and exploits.
Below are a few of the most well-known ones.

Rust

Rust is known for its robust memory safety features, enforced through its
ownership model and type system. Rust guarantees memory safety without a
garbage collector, provides high performance, and supports concurrency.

Go

Go simplifies memory management with garbage collection and strong
typing. Go offers fast compilation, ease of use, and built-in concurrency
support which makes it ideal for scalable applications.

Swift

Swift offers automatic memory management through reference counting,
designed for developing iOS and macOS applications. Benefits include high
performance, safety features like optionals to handle null values, and an
expressive syntax.

SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

From Vulnerabilities to Weaponized Exploits:

Case Studies of Significant Memory Safety

Breaches

SAUDI ARAMCO ATTACKS
(2017)

Targeted malware exploiting memory
safety vulnerabilities caused
significant disruption to industrial
control systems, highlighting how
memory corruption can bridge the air
gap in ostensibly secure
environments.

VOLT TYPHOON
CAMPAIGN (2023)

Advanced persistent threat actors
leveraged memory safety
vulnerabilities to establish long-term
access to critical infrastructure
organizations, particularly targeting
the communications, manufacturing,
and transportation sectors.

RunSafe Security SAFEG

MORRIS WORM (1988)

One of the first major internet worms,
the Morris worm exploited a buffer
overflow vulnerability in Unix's finger
service, causing widespread
disruption and highlighting the critical
need for improved memory safety
practices.

EQUIFAX BREACH (2017)

Part of the Equifax breach was
attributed to a memory vulnerability
in Apache Struts, which was exploited
to gain unauthorized access to
sensitive personal information of over
147 million people.

URGENT/11 (2019

A series of 11 vulnerabilities in
VxWorks RTOS, affecting an
estimated two billion devices across
critical sectors. These memory
corruption flaws enabled remote code
execution without user interaction,
demonstrating how memory safety
issues can compromise entire loT
ecosystems.

ARDING CODE: A COMPREHENSIVE

Tips for Migrating Legacy Code to Memory-Safe
Languages

Migrating legacy code to memory-safe languages can be complex but offers
long-term security benefits. Below are some strategies to facilitate this
process.

Assess and plan

Evaluate the existing codebase to identify critical components and
dependencies. Develop a detailed migration plan that includes timelines,
resource allocation, and risk mitigation strategies. Use static analysis tools to
map out the code structure and identify areas needing significant changes.

Incremental migration

Break down the migration process into smaller, manageable phases. Start
with critical modules that benefit most from enhanced memory safety.
Establish clear milestones and continuously test each migrated component
to ensure functionality and security.

Use automated refactoring tools

Use automated tools to assist in refactoring code, which can help in
translating legacy code into a memory-safe language. Combine these
automated tools with manual code reviews to ensure the accuracy and
security of the migrated code.

IDE TO ADDRESSING THE MEMORY SAFETY CRISIS

When Code Rewrites Are Impractical:
Securing Legacy Systems Today

While organizations work toward the long-term goal of transitioning

to memory-safe languages, adopting effective patching strategies,
implementing runtime protection measures, and establishing continuous
monitoring and vulnerability management processes all support in reducing
the attack surface. This section outlines best practices to enhance the
security of existing systems.

Strategies for Patching and Updating Software

Conduct regular patch management

Develop and adhere to a regular patch management schedule to ensure that
all software components are up-to-date with the latest security patches.
Automate the patching process using tools like WSUS (Windows Server
Update Services) or third-party patch management solutions to ensure
timely updates.

Prioritize patches based on severity

Evaluate the severity and exploitability of vulnerabilities to prioritize

patch deployment. Use vulnerability scoring systems like CVSS (Common
Vulnerability Scoring System) to assess risk levels and prioritize accordingly.

Test patches before deployment

Conduct thorough testing of patches in a staging environment to identify
potential issues before rolling them out to production. Use automated
testing tools to simulate patch deployment and detect any adverse effects on
system stability and functionality.

RunSafe Security

Implementing Runtime Protection Measures

Integrate Runtime Application Self-Protection (RASP)

Integrate RASP solutions to monitor and protect applications during runtime
by detecting and mitigating attacks in real-time. Be sure to choose RASP
tools that provide visibility into application behavior and can dynamically
adapt to new threats.

Enable Data Execution Prevention (DEP)
Enable DEP to prevent the execution of code from non-executable memory
regions, reducing the risk of certain types of attacks. Ensure that DEP is

configured correctly and consistently across all systems and applications.

Implement Address Space Layout Randomization (ASLR)

Implement ASLR to randomize memory addresses used by system and
application processes, making it harder for attackers to predict target
addresses. Verify that ASLR is enabled and functioning correctly on all

supported systems.

Load-Time Function Randomization (LFR)

Adopt Load Time Function Randomization to protect against both known
and unknown vulnerabilities at runtime. LFR randomizes code layouts in
memory, preventing attackers from predicting where code is located, making
it significantly harder to exploit memory vulnerabilities like buffer overflow
attacks and Return-Oriented Programming (ROP).

SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Control Flow Integrity (CFI)

Implement Control Flow Integrity (CFI) to prevent attackers from hijacking
a program’s execution flow, making it much harder for malicious actors to
redirect program execution to arbitrary code locations.

Implementing Continuous Monitoring and
Vulnerability Management Strategies

This section explores essential strategies for effective patching and updating
of software, as well as critical runtime protection measures to enhance
application security and resilience against threats.

Implement automated vulnerability scanning

Employ automated tools to continuously scan for vulnerabilities in the
system, network, and applications. Use comprehensive vulnerability
management platforms like Qualys or Nessus to schedule regular scans and
receive real-time alerts.

Deploy Security Information and Event Management (SIEM)

Deploy SIEM solutions to collect, analyze, and respond to security events and
incidents across the organization. Integrate SIEM with other security tools to
create a cohesive incident response strategy and ensure that it can correlate
events from multiple sources for better threat detection.

Conduct regular security audits and penetration testing

Conduct regular security audits and penetration tests to identify and
remediate vulnerabilities that may have been missed by automated tools.
Go the extra step by partnering with external security experts to perform

thorough assessments and provide an objective evaluation of the system’s
security posture.

RunSafe Security = SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Tools and Techniques for Detecting

Memory Safety Issues

Static vs. Dynamic Analysis Tools

Both static and dynamic analysis tools play a significant role in identifying
vulnerabilities early in the development cycle.

Static analysis tools analyze code without executing it. They are excellent for
detecting potential memory safety issues by examining code patterns and
syntax.

Examples include:

Clang Static Analyzer: An open-source tool that integrates with the Clang
compiler to find bugs in C, C++, and Objective-C code.

Coverity: A commercial tool that uses static analysis to detect defects in
source code, including buffer overflows and memory leaks.

Code Secure: A SAST tool that scans source code to identify security
vulnerabilities, compliance issues, and potential weaknesses in web
applications and enterprise software.

Dynamic analysis tools analyze the behavior of running software. They are
particularly effective at identifying runtime errors such as use-after-free and
buffer overflows.

Examples include:

Valgrind: An open-source tool that detects memory management and
threading bugs in C and C++ programs.

AddressSanitizer (ASan): A fast memory error detector that can find out-
of-bounds access and use-after-free errors.

AppScan: A web and mobile application security testing suite that
identifies vulnerabilities through multiple testing methods.

Veracode: A cloud-based platform for continuous application security

testing throughout the software development lifecycle.

Checkmarx: A static application security testing tool that analyzes source
code to detect vulnerabilities across various languages.

Fortify: An end-to-end application security platform offering static,
dynamic, and runtime testing to identify and remediate security issues.

=N

RunSafe Security = SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Automated Tool and Manual Testing Best
Practices

Integrate tools early and often

Integrate both static and dynamic analysis tools into the continuous
integration/continuous deployment (CI/CD) pipeline to catch issues as early
as possible.

Combine automated and manual testing
While automated tools are powerful, manual code reviews and testing are

essential to identify complex vulnerabilities that automated tools might miss.

Pairing both approaches ensures comprehensive coverage.

Regularly update tools
Keep analysis tools up-to-date to benefit from the latest detection
capabilities and fixes for known issues.

Customize tool configurations
Tailor the configuration of analysis tools to suit your project’s specific needs
and coding standards to reduce false positives and enhance detection

accuracy.
Comparative Analysis of Available Tools

Below is a comparative analysis of various tools available for software
analysis and debugging, highlighting their strengths and ideal use cases.

Clang Static Analyzer vs. Coverity
While Clang Static Analyzer is an excellent free option for developers,
Coverity provides more advanced features and support, making it suitable

for large enterprises seeking in-depth analysis.

RunSafe Security

Valgrind vs. AddressSanitizer (ASan)

Valgrind is comprehensive and versatile but can be slower compared to
ASan, which offers faster detection at the cost of higher memory usage. ASan
isintegrated into the LLVM and GCC compilers, providing seamless adoption

for C and C++ projects.

SonarQube

SonarQube is a versatile platform that offers static analysis capabilities for
multiple languages. It provides detailed reports and integrates with CI/CD

pipelines, making it a strong choice for continuous code quality assurance.

Leveraging a mix of static and dynamic analysis tools, combined with best
practices in automated and manual testing, significantly enhances an
organization’s ability to detect and address memory safety vulnerabilities.
This comprehensive approach ensures robust security and reliability for your

team’s software development.

SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

The Future of Memory Safety:
A Time for Action, Not Just Awareness

Securing embedded systems in critical infrastructure has never been more —"—

0xb6e99538

pressing, and addressing memory-safety vulnerabilities will go a long way

Oxb6eassss 3

toward decreasing the attack surface of the technology, systems,and |l | | e

Oxb6ebibds i e 1 T

products that power everything from our power grid to our defense and

Oxbéebdf28 fm - o

transportation systems.

Oxbéecaz7s [=

Oxbéedescs flu =

While the complete replacement or rewrite of legacy systems into memory

Oxbéee2918 [o

safe languages may be the ideal long-term solution, practical constraints

ORIGINAL ASLR RUNSAFE PROTECT:
necessitate implementing security measures that can tackle memory safety SOURCE

vulnerabilities today and into the future.

¢ Enhanced Runtime Protection: Implement security measures that can

rotect systems without source code modification, providing security for . - . .
P Y P & y RunSafe provides memory-based vulnerability protection without

the need for costly and time-consuming code rewrites. Through

Load-Time Function Randomization, our Protect platform

relocates software functions in memory every time the software

o Architectural Resilience: Develop systems with built-in security features is run, resulting in a unique memory layout, preventing attackers
that reduce vulnerability to exploitation. from exploiting memory-based vulnerabilities.

legacy systems.

o Binary-level Security: Adopt techniques that improve the security
posture of existing binaries without impacting system performance.

These approaches offer practical solutions that can be implemented RunSafe’s approach maintains system performance and

alongside longer-term strategies like code modernization while reducing the functionality without modifying the original software. Additionally,

costs and challenges of scanning, patching, and monitoring. RunSafe offers a repository of pre-hardened open-source
packages and containers, providing immediate protection against
attacks even without modifying source code.

RunSafe Security = SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Further Resources and Glossary

Further Resources

Learn more about the memory safety crisis and protecting embedded
systems across critical infrastructure with resources from RunSafe Security.

Interview with Kiersten Todt, a former Chief of Staff at the Cybersecurity
and Infrastructure Security Agency (CISA), emphasizes the importance of
addressing memory safety and shifting liability from asset owners to product
manufacturers to mitigate cybersecurity threats. (Kiersten Todt: “The Value
of People” | RunSafe Security).

Visit the RunSafe blog.
Register for upcoming events.
Learn about the RunSafe platform.

Glossary

A
AddressSanitizer (ASan): A fast memory error detector that can find out-of-
bounds access and use-after-free errors. Integrated into the LLVM and GCC

compilers.

B

Buffer overflow: A vulnerability that occurs when a program writes
more data to a buffer than it can hold, leading to adjacent memory being
overwritten.

RunSafe Security

(o
Clang Static Analyzer: An open-source tool that integrates with the Clang
compiler to find bugs in C, C++, and Objective-C code through static analysis.

Common Vulnerability Scoring System (CVSS): A system used to evaluate
the severity and exploitability of vulnerabilities to prioritize patch
deployment.

Control Flow Integrity (CFI): Control Flow Integrity prevents attackers from
hijacking a program’s execution flow, making it much harder for malicious
actors to redirect program execution to arbitrary code locations.

Coverity: A commercial static analysis tool that detects defects in source
code, including buffer overflows and memory leaks.

D
Dangling pointer: A pointer that references a memory location that has been
deallocated, potentially leading to invalid memory access.

Data Execution Prevention (DEP): A security feature that prevents the
execution of code from non-executable memory regions, reducing the risk of
certain types of attacks.

E

Equifax breach (2017): A major data breach exposing sensitive information
of over 147 million individuals, partially attributed to memory management
flaws in Apache Struts.

SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

F

Federal Information Security Management Act (FISMA): A U.S. regulation
requiring federal agencies to implement comprehensive information security
programs, including secure software development practices.

G

General Data Protection Regulation (GDPR): An EU regulation mandating
stringent data protection and privacy measures for organizations handling
personal data of EU citizens.

H
Heartbleed (2014): A bug in the OpenSSL library caused by a buffer over-
read, allowing attackers to read sensitive data from the memory of affected

servers.

Health Insurance Portability and Accountability Act (HIPAA): A regulation
setting standards for protecting sensitive patient data in the healthcare
sector.

L

Load Time Function Randomization (LFR): Load Time Function
Randomization protects against both known and unknown vulnerabilities at
runtime. LFR randomizes code layouts in memory, preventing attackers from
predicting where code is located, making it significantly harder to exploit
memory vulnerabilities like buffer overflow attacks and Return-Oriented
Programming (ROP).

M

Memory leak: Occurs when a program fails to release memory that is no
longer needed, leading to gradual memory consumption and potential system
slowdowns or crashes.

RunSafe Security

Memory safety: The protection of memory access operations against
vulnerabilities such as buffer overflows, dangling pointers, and memory
leaks.

Morris worm (1988): One of the first major internet worms, exploiting a
buffer overflow vulnerability in Unix’s finger service.

P
Payment Card Industry Data Security Standard (PCI DSS): A standard

for organizations processing credit card transactions, including specific
requirements for securing software systems to prevent data breaches and
fraud.

R
Runtime Application Self-Protection (RASP): Solutions that monitor and
protect applications during runtime by detecting and mitigating attacks in

real-time.

Rust: A programming language known for its robust memory safety features,
enforced through its ownership model and type system.

)

SonarQube: A versatile platform offering static analysis capabilities for
multiple languages, providing detailed reports and integration with CI/CD
pipelines.

Static Analysis Tools: Tools that analyze code without executing it, excellent
for detecting potential memory safety issues by examining code patterns and
syntax.

SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

U
Use-after-free error: An error occurring when a program continues to use a
pointer after the memory it references has been freed, potentially leading to

arbitrary code execution, data corruption, or system crashes.

v
Valgrind: An open-source tool that detects memory management and

threading bugs in C and C++ programs through dynamic analysis.

RUNSAFE

SECURITY

ABOUT RUNSAFE SECURITY, INC.

RunSafe Security is the pioneer of a unique cyberhardening
technology designed to disrupt attackers and protect vulnerable
embedded systems and devices. With the ability to make each
device functionally identical but logically unique, RunSafe Security
renders threats inert by eliminating attack vectors, significantly
reducing vulnerabilities, and denying malware the uniformity
required to propagate. Based in McLean, Virginia, with an office www.RunSafeSecurity.com
in Huntsville, Alabama, RunSafe Security’s customers span 571.441.5076
the Industrial Internet of Things (IIoT), critical infrastructure,

automotive, and national security industries. sales@RunSafeSecurity.com

