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An Introduction to Memory Safety

Memory safety is a foundational aspect of software development, 

referring to the protection of memory access operations against common 

vulnerabilities like buffer overflows, dangling pointers, and memory leaks. 

But while memory safety is a well-understood problem by both software 

developers and policymakers alike, memory safety vulnerabilities have 

persisted across the decades, from the infamous Morris Worm of 1988—

one of the first major cyber incidents—that exploited a buffer overflow 

vulnerability to the present-day Volt Typhoon campaign leveraging memory 

safety vulnerabilities to target critical infrastructure.

Memory safety vulnerabilities remain an issue for four reasons:

1.	 Legacy Codebase Dependency: Critical infrastructure relies heavily on 

systems written in memory-unsafe languages, primarily C and C++. The 

codebase for a typical industrial control system can span millions of lines, 

making comprehensive rewrites into memory-safe languages like Rust, 

Go, or Java impractical.

2.	 Performance Constraints: Memory-safe languages often introduce 

runtime overhead that may be unacceptable for performance-critical 

systems, particularly in embedded environments with limited resources.

3.	 Complexity of Modern Applications: Modern software applications 

are increasingly complex and distributed across diverse environments 

(cloud, edge, IoT). Managing memory safety across these environments 

while ensuring interoperability and performance remains a challenge.

4.	 Sophisticated Exploitation Techniques: Cyber adversaries continually 

evolve their techniques to exploit memory safety vulnerabilities.  

Zero-day exploits targeting memory flaws can have severe consequences 

if not promptly identified and mitigated.

Despite the challenges, memory safety vulnerabilities must be addressed. 

In 2022, the National Security Agency (NSA) issued guidance emphasizing 

the severity of memory safety vulnerabilities, stating that they remain the 

most readily exploitable category of software flaws. Additionally, MITRE’s 

Common Weakness Enumeration (CWE) consistently ranks memory 

corruption vulnerabilities among the top 25 most dangerous software 

weaknesses.

Memory safety vulnerabilities in particular pose a substantial and pressing 

threat to embedded software deployed across critical infrastructure, the 

automotive industry, medical devices, and more. Malicious actors can exploit 

these vulnerabilities to execute arbitrary code, compromise sensitive data, or 

cause system crashes. When we think about these attacks in the context of 

the energy grid, defense systems, and transportation, it’s clear that it’s time 

to address the memory safety crisis once and for all.

This guide is designed to empower software developers, product managers, 

and security professionals with the knowledge and tools needed to address 

memory safety challenges to protect embedded systems today and into the 

future.

We’ll explore:

	• Strategies for transitioning to memory-safe architectures

	• Approaches for securing legacy systems

	• The role of automated tools and deploying protection at runtime to 

prevent memory corruption
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Mitigating Memory Safety Vulnerabilities: 
Where to Start

In 2023, CISA and international cyber agencies published guidance as part 

of their Secure by Design campaign on steps to take to address memory 

safety vulnerabilities, including using memory safe programming languages 

and writing and publishing memory safe roadmaps to “eliminate this class of 

vulnerability.”

Following Secure by Design practices is an excellent approach, addressing 

memory safety issues throughout the development process rather than 

bolting on security measures after the fact. The goal is to reduce the 

likelihood of vulnerabilities by making security an inherent part of the system 

architecture.

In the case of memory safety, Secure by Design often involves transitioning 

to memory-safe languages like Rust and Go, which can drastically reduce 

the risk of memory-related bugs. However, transitioning entire codebases to 

these languages, which can take years and requires a significant amount of 

resources, is impractical for legacy systems and critical infrastructure. In the 

interim, immediate solutions are needed to bridge the gap.

Organizations are adopting various approaches to address memory safety:

1.	 Selective Rewriting: Identifying and rewriting critical components in 

memory-safe languages like Rust.

2.	 Runtime Protection: Implementing Address Space Layout 

Randomization (ASLR), Control Flow Integrity (CFI), and emerging 

solutions like Load-Time Function Randomization (LFR).

3.	 Static and Dynamic Analysis: Employing advanced static analysis tools 

to identify potential memory safety violations during development.

In the next sections, we’ll address the practicalities of transitioning to 

memory-safe architectures and approaches to securing legacy systems 

without code rewrites.

Examples of Memory Safety Vulnerabilities

BUFFER OVERFLOWS

A buffer overflow occurs when a program writes more data to a buffer than it can 

hold, leading to adjacent memory being overwritten. This can cause unexpected 

behavior and provide an attack vector for malicious code execution.

USE-AFTER-FREE ERRORS

Use-After-Free errors occur when a program continues to use a pointer after the 

memory it references has been freed. This can lead to arbitrary code execution, 

data corruption, or system crashes.

MEMORY LEAKS

Memory leaks occur when a program fails to release memory that is no 

longer needed, leading to gradual memory consumption and potential system 

slowdowns or crashes.

DANGLING POINTERS

Dangling pointers arise when pointers are left pointing to memory locations that 

have been deallocated, potentially leading to access of invalid memory.
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Adopting Secure Code Standards and Memory 
Safe Languages

Adopting strict coding standards, leveraging memory-safe programming 

languages, and strategically migrating legacy code are vital steps to take 

toward preventing memory safety vulnerabilities and securing software 

systems. This section outlines these best practices. 

Secure Code Standards and Guidelines 
Adhering to coding standards and guidelines is fundamental to writing 

secure code. These practices help ensure consistency, readability, and, most 

importantly, security in software development.

Input validation
Always validate and sanitize input data to prevent buffer overflow and 

injection attacks. Use libraries and frameworks that provide built-in input 

validation mechanisms.

Memory management
Manage memory explicitly and avoid common pitfalls like buffer overflows, 

dangling pointers, and memory leaks. Use static analysis tools to detect and 

correct memory management issues early in the development cycle.

Code reviews
Conduct regular code reviews to catch potential vulnerabilities and enforce 

coding standards. Incorporate security-focused code review checklists and 

involve multiple reviewers with different expertise.

Use of libraries
Only use well-maintained and widely-used libraries that follow security best 

practices. Keep dependencies updated to incorporate the latest security 

patches.

Memory-Safe Programming Languages

Memory-safe programming languages are designed to prevent common 

memory-related errors, reducing the risk of vulnerabilities and exploits. 

Below are a few of the most well-known ones.

Rust
Rust is known for its robust memory safety features, enforced through its 

ownership model and type system. Rust guarantees memory safety without a 

garbage collector, provides high performance, and supports concurrency.

Go
Go simplifies memory management with garbage collection and strong 

typing. Go offers fast compilation, ease of use, and built-in concurrency 

support which makes it ideal for scalable applications.

Swift
Swift offers automatic memory management through reference counting, 

designed for developing iOS and macOS applications. Benefits include high 

performance, safety features like optionals to handle null values, and an 

expressive syntax.
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From Vulnerabilities to Weaponized Exploits: 
Case Studies of Significant Memory Safety 
Breaches

Tips for Migrating Legacy Code to Memory-Safe 
Languages

Migrating legacy code to memory-safe languages can be complex but offers 

long-term security benefits. Below are some strategies to facilitate this 

process. 

Assess and plan
Evaluate the existing codebase to identify critical components and 

dependencies. Develop a detailed migration plan that includes timelines, 

resource allocation, and risk mitigation strategies. Use static analysis tools to 

map out the code structure and identify areas needing significant changes.

Incremental migration
Break down the migration process into smaller, manageable phases. Start 

with critical modules that benefit most from enhanced memory safety. 

Establish clear milestones and continuously test each migrated component 

to ensure functionality and security.

Use automated refactoring tools
Use automated tools to assist in refactoring code, which can help in 

translating legacy code into a memory-safe language. Combine these 

automated tools with manual code reviews to ensure the accuracy and 

security of the migrated code.
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When Code Rewrites Are Impractical: 
Securing Legacy Systems Today

While organizations work toward the long-term goal of transitioning 

to memory-safe languages, adopting effective patching strategies, 

implementing runtime protection measures, and establishing continuous 

monitoring and vulnerability management processes all support in reducing 

the attack surface. This section outlines best practices to enhance the 

security of existing systems.

Strategies for Patching and Updating Software

Conduct regular patch management
Develop and adhere to a regular patch management schedule to ensure that 

all software components are up-to-date with the latest security patches. 

Automate the patching process using tools like WSUS (Windows Server 

Update Services) or third-party patch management solutions to ensure 

timely updates.

Prioritize patches based on severity
Evaluate the severity and exploitability of vulnerabilities to prioritize 

patch deployment. Use vulnerability scoring systems like CVSS (Common 

Vulnerability Scoring System) to assess risk levels and prioritize accordingly.

Test patches before deployment
Conduct thorough testing of patches in a staging environment to identify 

potential issues before rolling them out to production. Use automated 

testing tools to simulate patch deployment and detect any adverse effects on 

system stability and functionality.

Implementing Runtime Protection Measures

Integrate Runtime Application Self-Protection (RASP)
Integrate RASP solutions to monitor and protect applications during runtime 

by detecting and mitigating attacks in real-time. Be sure to choose RASP 

tools that provide visibility into application behavior and can dynamically 

adapt to new threats.

Enable Data Execution Prevention (DEP)
Enable DEP to prevent the execution of code from non-executable memory 

regions, reducing the risk of certain types of attacks. Ensure that DEP is 

configured correctly and consistently across all systems and applications.

Implement Address Space Layout Randomization (ASLR)
Implement ASLR to randomize memory addresses used by system and 

application processes, making it harder for attackers to predict target 

addresses. Verify that ASLR is enabled and functioning correctly on all 

supported systems.

Load-Time Function Randomization (LFR)
Adopt Load Time Function Randomization to protect against both known 

and unknown vulnerabilities at runtime. LFR randomizes code layouts in 

memory, preventing attackers from predicting where code is located, making 

it significantly harder to exploit memory vulnerabilities like buffer overflow 

attacks and Return-Oriented Programming (ROP).
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Control Flow Integrity (CFI)
Implement Control Flow Integrity (CFI) to prevent attackers from hijacking 

a program’s execution flow, making it much harder for malicious actors to 

redirect program execution to arbitrary code locations.

Implementing Continuous Monitoring and 
Vulnerability Management Strategies

This section explores essential strategies for effective patching and updating 

of software, as well as critical runtime protection measures to enhance 

application security and resilience against threats.

Implement automated vulnerability scanning
Employ automated tools to continuously scan for vulnerabilities in the 

system, network, and applications. Use comprehensive vulnerability 

management platforms like Qualys or Nessus to schedule regular scans and 

receive real-time alerts.

Deploy Security Information and Event Management (SIEM)
Deploy SIEM solutions to collect, analyze, and respond to security events and 

incidents across the organization. Integrate SIEM with other security tools to 

create a cohesive incident response strategy and ensure that it can correlate 

events from multiple sources for better threat detection.

Conduct regular security audits and penetration testing
Conduct regular security audits and penetration tests to identify and 

remediate vulnerabilities that may have been missed by automated tools. 

Go the extra step by partnering with external security experts to perform 

thorough assessments and provide an objective evaluation of the system’s 

security posture.
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Tools and Techniques for Detecting 
Memory Safety Issues

Static vs. Dynamic Analysis Tools

Both static and dynamic analysis tools play a significant role in identifying 

vulnerabilities early in the development cycle. 

Static analysis tools analyze code without executing it. They are excellent for 

detecting potential memory safety issues by examining code patterns and 

syntax. 

Examples include:

	• Clang Static Analyzer: An open-source tool that integrates with the Clang 

compiler to find bugs in C, C++, and Objective-C code.

	• Coverity: A commercial tool that uses static analysis to detect defects in 

source code, including buffer overflows and memory leaks.

	• Code Secure: A SAST tool that scans source code to identify security 

vulnerabilities, compliance issues, and potential weaknesses in web 

applications and enterprise software.

Dynamic analysis tools analyze the behavior of running software. They are 

particularly effective at identifying runtime errors such as use-after-free and 

buffer overflows. 

Examples include:

	• Valgrind: An open-source tool that detects memory management and 

threading bugs in C and C++ programs.

	• AddressSanitizer (ASan): A fast memory error detector that can find out-

of-bounds access and use-after-free errors.

	• AppScan: A web and mobile application security testing suite that 

identifies vulnerabilities through multiple testing methods.

	• Veracode: A cloud-based platform for continuous application security 

testing throughout the software development lifecycle.

	• Checkmarx: A static application security testing tool that analyzes source 

code to detect vulnerabilities across various languages.

	• Fortify: An end-to-end application security platform offering static, 

dynamic, and runtime testing to identify and remediate security issues.



RunSafe Security   10SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Automated Tool and Manual Testing Best 
Practices

Integrate tools early and often
Integrate both static and dynamic analysis tools into the continuous 

integration/continuous deployment (CI/CD) pipeline to catch issues as early 

as possible.

Combine automated and manual testing
While automated tools are powerful, manual code reviews and testing are 

essential to identify complex vulnerabilities that automated tools might miss. 

Pairing both approaches ensures comprehensive coverage.

Regularly update tools
Keep analysis tools up-to-date to benefit from the latest detection 

capabilities and fixes for known issues.

Customize tool configurations
Tailor the configuration of analysis tools to suit your project’s specific needs 

and coding standards to reduce false positives and enhance detection 

accuracy.

Comparative Analysis of Available Tools

Below is a comparative analysis of various tools available for software 

analysis and debugging, highlighting their strengths and ideal use cases.

Clang Static Analyzer vs. Coverity
While Clang Static Analyzer is an excellent free option for developers, 

Coverity provides more advanced features and support, making it suitable 

for large enterprises seeking in-depth analysis.

Valgrind vs. AddressSanitizer (ASan)
Valgrind is comprehensive and versatile but can be slower compared to 

ASan, which offers faster detection at the cost of higher memory usage. ASan 

is integrated into the LLVM and GCC compilers, providing seamless adoption 

for C and C++ projects.

SonarQube
SonarQube is a versatile platform that offers static analysis capabilities for 

multiple languages. It provides detailed reports and integrates with CI/CD 

pipelines, making it a strong choice for continuous code quality assurance.

Leveraging a mix of static and dynamic analysis tools, combined with best 

practices in automated and manual testing, significantly enhances an 

organization’s ability to detect and address memory safety vulnerabilities. 

This comprehensive approach ensures robust security and reliability for your 

team’s software development.
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The Future of Memory Safety: 
A Time for Action, Not Just Awareness
Securing embedded systems in critical infrastructure has never been more 

pressing, and addressing memory-safety vulnerabilities will go a long way 

toward decreasing the attack surface of the technology, systems, and 

products that power everything from our power grid to our defense and 

transportation systems.

While the complete replacement or rewrite of legacy systems into memory 

safe languages may be the ideal long-term solution, practical constraints 

necessitate implementing security measures that can tackle memory safety 

vulnerabilities today and into the future.

	• Enhanced Runtime Protection: Implement security measures that can 

protect systems without source code modification, providing security for 

legacy systems.

	• Binary-level Security: Adopt techniques that improve the security 

posture of existing binaries without impacting system performance.

	• Architectural Resilience: Develop systems with built-in security features 

that reduce vulnerability to exploitation.

These approaches offer practical solutions that can be implemented 

alongside longer-term strategies like code modernization while reducing the 

costs and challenges of scanning, patching, and monitoring.

How RunSafe Approaches Memory Safety

RunSafe provides memory-based vulnerability protection without 

the need for costly and time-consuming code rewrites. Through 

Load-Time Function Randomization, our Protect platform 

relocates software functions in memory every time the software 

is run, resulting in a unique memory layout, preventing attackers 

from exploiting memory-based vulnerabilities.

RunSafe’s approach maintains system performance and 

functionality without modifying the original software. Additionally, 

RunSafe offers a repository of pre-hardened open-source 

packages and containers, providing immediate protection against 

attacks even without modifying source code.
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Further Resources and Glossary

Further Resources

Learn more about the memory safety crisis and protecting embedded 

systems across critical infrastructure with resources from RunSafe Security.

Interview with Kiersten Todt, a former Chief of Staff at the Cybersecurity 

and Infrastructure Security Agency (CISA), emphasizes the importance of 

addressing memory safety and shifting liability from asset owners to product 

manufacturers to mitigate cybersecurity threats.​ (Kiersten Todt: “The Value 

of People” | RunSafe Security)​.

Visit the RunSafe blog. https://runsafesecurity.com/blog/

Register for upcoming events. https://runsafesecurity.com/events/

Learn about the RunSafe platform. https://runsafesecurity.com/platform/

Glossary

A
AddressSanitizer (ASan): A fast memory error detector that can find out-of-

bounds access and use-after-free errors. Integrated into the LLVM and GCC 

compilers.

B
Buffer overflow: A vulnerability that occurs when a program writes 

more data to a buffer than it can hold, leading to adjacent memory being 

overwritten.

C
Clang Static Analyzer: An open-source tool that integrates with the Clang 

compiler to find bugs in C, C++, and Objective-C code through static analysis.

Common Vulnerability Scoring System (CVSS): A system used to evaluate 

the severity and exploitability of vulnerabilities to prioritize patch 

deployment.

Control Flow Integrity (CFI): Control Flow Integrity prevents attackers from 

hijacking a program’s execution flow, making it much harder for malicious 

actors to redirect program execution to arbitrary code locations.

Coverity: A commercial static analysis tool that detects defects in source 

code, including buffer overflows and memory leaks.

D
Dangling pointer: A pointer that references a memory location that has been 

deallocated, potentially leading to invalid memory access.

Data Execution Prevention (DEP): A security feature that prevents the 

execution of code from non-executable memory regions, reducing the risk of 

certain types of attacks.

E
Equifax breach (2017): A major data breach exposing sensitive information 

of over 147 million individuals, partially attributed to memory management 

flaws in Apache Struts.
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F
Federal Information Security Management Act (FISMA): A U.S. regulation 

requiring federal agencies to implement comprehensive information security 

programs, including secure software development practices.

G
General Data Protection Regulation (GDPR): An EU regulation mandating 

stringent data protection and privacy measures for organizations handling 

personal data of EU citizens.

H
Heartbleed (2014): A bug in the OpenSSL library caused by a buffer over-

read, allowing attackers to read sensitive data from the memory of affected 

servers.

Health Insurance Portability and Accountability Act (HIPAA): A regulation 

setting standards for protecting sensitive patient data in the healthcare 

sector.

L
Load Time Function Randomization (LFR): Load Time Function 

Randomization protects against both known and unknown vulnerabilities at 

runtime. LFR randomizes code layouts in memory, preventing attackers from 

predicting where code is located, making it significantly harder to exploit 

memory vulnerabilities like buffer overflow attacks and Return-Oriented 

Programming (ROP).

M
Memory leak: Occurs when a program fails to release memory that is no 

longer needed, leading to gradual memory consumption and potential system 

slowdowns or crashes.

Memory safety: The protection of memory access operations against 

vulnerabilities such as buffer overflows, dangling pointers, and memory 

leaks.

Morris worm (1988): One of the first major internet worms, exploiting a 

buffer overflow vulnerability in Unix’s finger service.

P
Payment Card Industry Data Security Standard (PCI DSS): A standard 

for organizations processing credit card transactions, including specific 

requirements for securing software systems to prevent data breaches and 

fraud.

R
Runtime Application Self-Protection (RASP): Solutions that monitor and 

protect applications during runtime by detecting and mitigating attacks in 

real-time.

Rust: A programming language known for its robust memory safety features, 

enforced through its ownership model and type system.

S
SonarQube: A versatile platform offering static analysis capabilities for 

multiple languages, providing detailed reports and integration with CI/CD 

pipelines.

Static Analysis Tools: Tools that analyze code without executing it, excellent 

for detecting potential memory safety issues by examining code patterns and 

syntax.
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U
Use-after-free error: An error occurring when a program continues to use a 

pointer after the memory it references has been freed, potentially leading to 

arbitrary code execution, data corruption, or system crashes.

V
Valgrind: An open-source tool that detects memory management and 

threading bugs in C and C++ programs through dynamic analysis.


