
 1

Safeguarding Code:
A Comprehensive Guide

to Addressing the
Memory Safety Crisis

RunSafeSecurity.com

RunSafe Security 2SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Table of Contents

03 An Introduction to Memory Safety

04 Mitigating Memory Safety Vulnerabilities: Where to Start

05 Adopting Secure Code Standards and Memory Safe Languages

07 When Code Rewrites Are Impractical: Securing Legacy Systems Today

09 Tools and Techniques for Detecting Memory Safety Issues

11 The Future of Memory Safety: A Time for Action, Not Just Awareness

12 Further Resources and Glossary

RunSafe Security 3SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

An Introduction to Memory Safety

Memory safety is a foundational aspect of software development,

referring to the protection of memory access operations against common

vulnerabilities like buffer overflows, dangling pointers, and memory leaks.

But while memory safety is a well-understood problem by both software

developers and policymakers alike, memory safety vulnerabilities have

persisted across the decades, from the infamous Morris Worm of 1988—

one of the first major cyber incidents—that exploited a buffer overflow

vulnerability to the present-day Volt Typhoon campaign leveraging memory

safety vulnerabilities to target critical infrastructure.

Memory safety vulnerabilities remain an issue for four reasons:

1.	 Legacy Codebase Dependency: Critical infrastructure relies heavily on

systems written in memory-unsafe languages, primarily C and C++. The

codebase for a typical industrial control system can span millions of lines,

making comprehensive rewrites into memory-safe languages like Rust,

Go, or Java impractical.

2.	 Performance Constraints: Memory-safe languages often introduce

runtime overhead that may be unacceptable for performance-critical

systems, particularly in embedded environments with limited resources.

3.	 Complexity of Modern Applications: Modern software applications

are increasingly complex and distributed across diverse environments

(cloud, edge, IoT). Managing memory safety across these environments

while ensuring interoperability and performance remains a challenge.

4.	 Sophisticated Exploitation Techniques: Cyber adversaries continually

evolve their techniques to exploit memory safety vulnerabilities.

Zero-day exploits targeting memory flaws can have severe consequences

if not promptly identified and mitigated.

Despite the challenges, memory safety vulnerabilities must be addressed.

In 2022, the National Security Agency (NSA) issued guidance emphasizing

the severity of memory safety vulnerabilities, stating that they remain the

most readily exploitable category of software flaws. Additionally, MITRE’s

Common Weakness Enumeration (CWE) consistently ranks memory

corruption vulnerabilities among the top 25 most dangerous software

weaknesses.

Memory safety vulnerabilities in particular pose a substantial and pressing

threat to embedded software deployed across critical infrastructure, the

automotive industry, medical devices, and more. Malicious actors can exploit

these vulnerabilities to execute arbitrary code, compromise sensitive data, or

cause system crashes. When we think about these attacks in the context of

the energy grid, defense systems, and transportation, it’s clear that it’s time

to address the memory safety crisis once and for all.

This guide is designed to empower software developers, product managers,

and security professionals with the knowledge and tools needed to address

memory safety challenges to protect embedded systems today and into the

future.

We’ll explore:

	• Strategies for transitioning to memory-safe architectures

	• Approaches for securing legacy systems

	• The role of automated tools and deploying protection at runtime to

prevent memory corruption

RunSafe Security 4SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Mitigating Memory Safety Vulnerabilities:
Where to Start

In 2023, CISA and international cyber agencies published guidance as part

of their Secure by Design campaign on steps to take to address memory

safety vulnerabilities, including using memory safe programming languages

and writing and publishing memory safe roadmaps to “eliminate this class of

vulnerability.”

Following Secure by Design practices is an excellent approach, addressing

memory safety issues throughout the development process rather than

bolting on security measures after the fact. The goal is to reduce the

likelihood of vulnerabilities by making security an inherent part of the system

architecture.

In the case of memory safety, Secure by Design often involves transitioning

to memory-safe languages like Rust and Go, which can drastically reduce

the risk of memory-related bugs. However, transitioning entire codebases to

these languages, which can take years and requires a significant amount of

resources, is impractical for legacy systems and critical infrastructure. In the

interim, immediate solutions are needed to bridge the gap.

Organizations are adopting various approaches to address memory safety:

1.	 Selective Rewriting: Identifying and rewriting critical components in

memory-safe languages like Rust.

2.	 Runtime Protection: Implementing Address Space Layout

Randomization (ASLR), Control Flow Integrity (CFI), and emerging

solutions like Load-Time Function Randomization (LFR).

3.	 Static and Dynamic Analysis: Employing advanced static analysis tools

to identify potential memory safety violations during development.

In the next sections, we’ll address the practicalities of transitioning to

memory-safe architectures and approaches to securing legacy systems

without code rewrites.

Examples of Memory Safety Vulnerabilities

BUFFER OVERFLOWS

A buffer overflow occurs when a program writes more data to a buffer than it can

hold, leading to adjacent memory being overwritten. This can cause unexpected

behavior and provide an attack vector for malicious code execution.

USE-AFTER-FREE ERRORS

Use-After-Free errors occur when a program continues to use a pointer after the

memory it references has been freed. This can lead to arbitrary code execution,

data corruption, or system crashes.

MEMORY LEAKS

Memory leaks occur when a program fails to release memory that is no

longer needed, leading to gradual memory consumption and potential system

slowdowns or crashes.

DANGLING POINTERS

Dangling pointers arise when pointers are left pointing to memory locations that

have been deallocated, potentially leading to access of invalid memory.

RunSafe Security 5SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Adopting Secure Code Standards and Memory
Safe Languages

Adopting strict coding standards, leveraging memory-safe programming

languages, and strategically migrating legacy code are vital steps to take

toward preventing memory safety vulnerabilities and securing software

systems. This section outlines these best practices.

Secure Code Standards and Guidelines
Adhering to coding standards and guidelines is fundamental to writing

secure code. These practices help ensure consistency, readability, and, most

importantly, security in software development.

Input validation
Always validate and sanitize input data to prevent buffer overflow and

injection attacks. Use libraries and frameworks that provide built-in input

validation mechanisms.

Memory management
Manage memory explicitly and avoid common pitfalls like buffer overflows,

dangling pointers, and memory leaks. Use static analysis tools to detect and

correct memory management issues early in the development cycle.

Code reviews
Conduct regular code reviews to catch potential vulnerabilities and enforce

coding standards. Incorporate security-focused code review checklists and

involve multiple reviewers with different expertise.

Use of libraries
Only use well-maintained and widely-used libraries that follow security best

practices. Keep dependencies updated to incorporate the latest security

patches.

Memory-Safe Programming Languages

Memory-safe programming languages are designed to prevent common

memory-related errors, reducing the risk of vulnerabilities and exploits.

Below are a few of the most well-known ones.

Rust
Rust is known for its robust memory safety features, enforced through its

ownership model and type system. Rust guarantees memory safety without a

garbage collector, provides high performance, and supports concurrency.

Go
Go simplifies memory management with garbage collection and strong

typing. Go offers fast compilation, ease of use, and built-in concurrency

support which makes it ideal for scalable applications.

Swift
Swift offers automatic memory management through reference counting,

designed for developing iOS and macOS applications. Benefits include high

performance, safety features like optionals to handle null values, and an

expressive syntax.

RunSafe Security 6SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

From Vulnerabilities to Weaponized Exploits:
Case Studies of Significant Memory Safety
Breaches

Tips for Migrating Legacy Code to Memory-Safe
Languages

Migrating legacy code to memory-safe languages can be complex but offers

long-term security benefits. Below are some strategies to facilitate this

process.

Assess and plan
Evaluate the existing codebase to identify critical components and

dependencies. Develop a detailed migration plan that includes timelines,

resource allocation, and risk mitigation strategies. Use static analysis tools to

map out the code structure and identify areas needing significant changes.

Incremental migration
Break down the migration process into smaller, manageable phases. Start

with critical modules that benefit most from enhanced memory safety.

Establish clear milestones and continuously test each migrated component

to ensure functionality and security.

Use automated refactoring tools
Use automated tools to assist in refactoring code, which can help in

translating legacy code into a memory-safe language. Combine these

automated tools with manual code reviews to ensure the accuracy and

security of the migrated code.

RunSafe Security 7SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

When Code Rewrites Are Impractical:
Securing Legacy Systems Today

While organizations work toward the long-term goal of transitioning

to memory-safe languages, adopting effective patching strategies,

implementing runtime protection measures, and establishing continuous

monitoring and vulnerability management processes all support in reducing

the attack surface. This section outlines best practices to enhance the

security of existing systems.

Strategies for Patching and Updating Software

Conduct regular patch management
Develop and adhere to a regular patch management schedule to ensure that

all software components are up-to-date with the latest security patches.

Automate the patching process using tools like WSUS (Windows Server

Update Services) or third-party patch management solutions to ensure

timely updates.

Prioritize patches based on severity
Evaluate the severity and exploitability of vulnerabilities to prioritize

patch deployment. Use vulnerability scoring systems like CVSS (Common

Vulnerability Scoring System) to assess risk levels and prioritize accordingly.

Test patches before deployment
Conduct thorough testing of patches in a staging environment to identify

potential issues before rolling them out to production. Use automated

testing tools to simulate patch deployment and detect any adverse effects on

system stability and functionality.

Implementing Runtime Protection Measures

Integrate Runtime Application Self-Protection (RASP)
Integrate RASP solutions to monitor and protect applications during runtime

by detecting and mitigating attacks in real-time. Be sure to choose RASP

tools that provide visibility into application behavior and can dynamically

adapt to new threats.

Enable Data Execution Prevention (DEP)
Enable DEP to prevent the execution of code from non-executable memory

regions, reducing the risk of certain types of attacks. Ensure that DEP is

configured correctly and consistently across all systems and applications.

Implement Address Space Layout Randomization (ASLR)
Implement ASLR to randomize memory addresses used by system and

application processes, making it harder for attackers to predict target

addresses. Verify that ASLR is enabled and functioning correctly on all

supported systems.

Load-Time Function Randomization (LFR)
Adopt Load Time Function Randomization to protect against both known

and unknown vulnerabilities at runtime. LFR randomizes code layouts in

memory, preventing attackers from predicting where code is located, making

it significantly harder to exploit memory vulnerabilities like buffer overflow

attacks and Return-Oriented Programming (ROP).

RunSafe Security 8SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Control Flow Integrity (CFI)
Implement Control Flow Integrity (CFI) to prevent attackers from hijacking

a program’s execution flow, making it much harder for malicious actors to

redirect program execution to arbitrary code locations.

Implementing Continuous Monitoring and
Vulnerability Management Strategies

This section explores essential strategies for effective patching and updating

of software, as well as critical runtime protection measures to enhance

application security and resilience against threats.

Implement automated vulnerability scanning
Employ automated tools to continuously scan for vulnerabilities in the

system, network, and applications. Use comprehensive vulnerability

management platforms like Qualys or Nessus to schedule regular scans and

receive real-time alerts.

Deploy Security Information and Event Management (SIEM)
Deploy SIEM solutions to collect, analyze, and respond to security events and

incidents across the organization. Integrate SIEM with other security tools to

create a cohesive incident response strategy and ensure that it can correlate

events from multiple sources for better threat detection.

Conduct regular security audits and penetration testing
Conduct regular security audits and penetration tests to identify and

remediate vulnerabilities that may have been missed by automated tools.

Go the extra step by partnering with external security experts to perform

thorough assessments and provide an objective evaluation of the system’s

security posture.

RunSafe Security 9SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Tools and Techniques for Detecting
Memory Safety Issues

Static vs. Dynamic Analysis Tools

Both static and dynamic analysis tools play a significant role in identifying

vulnerabilities early in the development cycle.

Static analysis tools analyze code without executing it. They are excellent for

detecting potential memory safety issues by examining code patterns and

syntax.

Examples include:

	• Clang Static Analyzer: An open-source tool that integrates with the Clang

compiler to find bugs in C, C++, and Objective-C code.

	• Coverity: A commercial tool that uses static analysis to detect defects in

source code, including buffer overflows and memory leaks.

	• Code Secure: A SAST tool that scans source code to identify security

vulnerabilities, compliance issues, and potential weaknesses in web

applications and enterprise software.

Dynamic analysis tools analyze the behavior of running software. They are

particularly effective at identifying runtime errors such as use-after-free and

buffer overflows.

Examples include:

	• Valgrind: An open-source tool that detects memory management and

threading bugs in C and C++ programs.

	• AddressSanitizer (ASan): A fast memory error detector that can find out-

of-bounds access and use-after-free errors.

	• AppScan: A web and mobile application security testing suite that

identifies vulnerabilities through multiple testing methods.

	• Veracode: A cloud-based platform for continuous application security

testing throughout the software development lifecycle.

	• Checkmarx: A static application security testing tool that analyzes source

code to detect vulnerabilities across various languages.

	• Fortify: An end-to-end application security platform offering static,

dynamic, and runtime testing to identify and remediate security issues.

RunSafe Security 10SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Automated Tool and Manual Testing Best
Practices

Integrate tools early and often
Integrate both static and dynamic analysis tools into the continuous

integration/continuous deployment (CI/CD) pipeline to catch issues as early

as possible.

Combine automated and manual testing
While automated tools are powerful, manual code reviews and testing are

essential to identify complex vulnerabilities that automated tools might miss.

Pairing both approaches ensures comprehensive coverage.

Regularly update tools
Keep analysis tools up-to-date to benefit from the latest detection

capabilities and fixes for known issues.

Customize tool configurations
Tailor the configuration of analysis tools to suit your project’s specific needs

and coding standards to reduce false positives and enhance detection

accuracy.

Comparative Analysis of Available Tools

Below is a comparative analysis of various tools available for software

analysis and debugging, highlighting their strengths and ideal use cases.

Clang Static Analyzer vs. Coverity
While Clang Static Analyzer is an excellent free option for developers,

Coverity provides more advanced features and support, making it suitable

for large enterprises seeking in-depth analysis.

Valgrind vs. AddressSanitizer (ASan)
Valgrind is comprehensive and versatile but can be slower compared to

ASan, which offers faster detection at the cost of higher memory usage. ASan

is integrated into the LLVM and GCC compilers, providing seamless adoption

for C and C++ projects.

SonarQube
SonarQube is a versatile platform that offers static analysis capabilities for

multiple languages. It provides detailed reports and integrates with CI/CD

pipelines, making it a strong choice for continuous code quality assurance.

Leveraging a mix of static and dynamic analysis tools, combined with best

practices in automated and manual testing, significantly enhances an

organization’s ability to detect and address memory safety vulnerabilities.

This comprehensive approach ensures robust security and reliability for your

team’s software development.

RunSafe Security 11SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

The Future of Memory Safety:
A Time for Action, Not Just Awareness
Securing embedded systems in critical infrastructure has never been more

pressing, and addressing memory-safety vulnerabilities will go a long way

toward decreasing the attack surface of the technology, systems, and

products that power everything from our power grid to our defense and

transportation systems.

While the complete replacement or rewrite of legacy systems into memory

safe languages may be the ideal long-term solution, practical constraints

necessitate implementing security measures that can tackle memory safety

vulnerabilities today and into the future.

	• Enhanced Runtime Protection: Implement security measures that can

protect systems without source code modification, providing security for

legacy systems.

	• Binary-level Security: Adopt techniques that improve the security

posture of existing binaries without impacting system performance.

	• Architectural Resilience: Develop systems with built-in security features

that reduce vulnerability to exploitation.

These approaches offer practical solutions that can be implemented

alongside longer-term strategies like code modernization while reducing the

costs and challenges of scanning, patching, and monitoring.

How RunSafe Approaches Memory Safety

RunSafe provides memory-based vulnerability protection without

the need for costly and time-consuming code rewrites. Through

Load-Time Function Randomization, our Protect platform

relocates software functions in memory every time the software

is run, resulting in a unique memory layout, preventing attackers

from exploiting memory-based vulnerabilities.

RunSafe’s approach maintains system performance and

functionality without modifying the original software. Additionally,

RunSafe offers a repository of pre-hardened open-source

packages and containers, providing immediate protection against

attacks even without modifying source code.

RunSafe Security 12SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

Further Resources and Glossary

Further Resources

Learn more about the memory safety crisis and protecting embedded

systems across critical infrastructure with resources from RunSafe Security.

Interview with Kiersten Todt, a former Chief of Staff at the Cybersecurity

and Infrastructure Security Agency (CISA), emphasizes the importance of

addressing memory safety and shifting liability from asset owners to product

manufacturers to mitigate cybersecurity threats.​ (Kiersten Todt: “The Value

of People” | RunSafe Security)​.

Visit the RunSafe blog. https://runsafesecurity.com/blog/

Register for upcoming events. https://runsafesecurity.com/events/

Learn about the RunSafe platform. https://runsafesecurity.com/platform/

Glossary

A
AddressSanitizer (ASan): A fast memory error detector that can find out-of-

bounds access and use-after-free errors. Integrated into the LLVM and GCC

compilers.

B
Buffer overflow: A vulnerability that occurs when a program writes

more data to a buffer than it can hold, leading to adjacent memory being

overwritten.

C
Clang Static Analyzer: An open-source tool that integrates with the Clang

compiler to find bugs in C, C++, and Objective-C code through static analysis.

Common Vulnerability Scoring System (CVSS): A system used to evaluate

the severity and exploitability of vulnerabilities to prioritize patch

deployment.

Control Flow Integrity (CFI): Control Flow Integrity prevents attackers from

hijacking a program’s execution flow, making it much harder for malicious

actors to redirect program execution to arbitrary code locations.

Coverity: A commercial static analysis tool that detects defects in source

code, including buffer overflows and memory leaks.

D
Dangling pointer: A pointer that references a memory location that has been

deallocated, potentially leading to invalid memory access.

Data Execution Prevention (DEP): A security feature that prevents the

execution of code from non-executable memory regions, reducing the risk of

certain types of attacks.

E
Equifax breach (2017): A major data breach exposing sensitive information

of over 147 million individuals, partially attributed to memory management

flaws in Apache Struts.

RunSafe Security 13SAFEGUARDING CODE: A COMPREHENSIVE GUIDE TO ADDRESSING THE MEMORY SAFETY CRISIS

F
Federal Information Security Management Act (FISMA): A U.S. regulation

requiring federal agencies to implement comprehensive information security

programs, including secure software development practices.

G
General Data Protection Regulation (GDPR): An EU regulation mandating

stringent data protection and privacy measures for organizations handling

personal data of EU citizens.

H
Heartbleed (2014): A bug in the OpenSSL library caused by a buffer over-

read, allowing attackers to read sensitive data from the memory of affected

servers.

Health Insurance Portability and Accountability Act (HIPAA): A regulation

setting standards for protecting sensitive patient data in the healthcare

sector.

L
Load Time Function Randomization (LFR): Load Time Function

Randomization protects against both known and unknown vulnerabilities at

runtime. LFR randomizes code layouts in memory, preventing attackers from

predicting where code is located, making it significantly harder to exploit

memory vulnerabilities like buffer overflow attacks and Return-Oriented

Programming (ROP).

M
Memory leak: Occurs when a program fails to release memory that is no

longer needed, leading to gradual memory consumption and potential system

slowdowns or crashes.

Memory safety: The protection of memory access operations against

vulnerabilities such as buffer overflows, dangling pointers, and memory

leaks.

Morris worm (1988): One of the first major internet worms, exploiting a

buffer overflow vulnerability in Unix’s finger service.

P
Payment Card Industry Data Security Standard (PCI DSS): A standard

for organizations processing credit card transactions, including specific

requirements for securing software systems to prevent data breaches and

fraud.

R
Runtime Application Self-Protection (RASP): Solutions that monitor and

protect applications during runtime by detecting and mitigating attacks in

real-time.

Rust: A programming language known for its robust memory safety features,

enforced through its ownership model and type system.

S
SonarQube: A versatile platform offering static analysis capabilities for

multiple languages, providing detailed reports and integration with CI/CD

pipelines.

Static Analysis Tools: Tools that analyze code without executing it, excellent

for detecting potential memory safety issues by examining code patterns and

syntax.

ABOUT RUNSAFE SECURITY, INC.

RunSafe Security is the pioneer of a unique cyberhardening
technology designed to disrupt attackers and protect vulnerable
embedded systems and devices. With the ability to make each
device functionally identical but logically unique, RunSafe Security
renders threats inert by eliminating attack vectors, significantly
reducing vulnerabilities, and denying malware the uniformity
required to propagate. Based in McLean, Virginia, with an office
in Huntsville, Alabama, RunSafe Security’s customers span
the Industrial Internet of Things (IIoT), critical infrastructure,
automotive, and national security industries.

www.RunSafeSecurity.com

571.441.5076

sales@RunSafeSecurity.com

U
Use-after-free error: An error occurring when a program continues to use a

pointer after the memory it references has been freed, potentially leading to

arbitrary code execution, data corruption, or system crashes.

V
Valgrind: An open-source tool that detects memory management and

threading bugs in C and C++ programs through dynamic analysis.

