Memory
Safety
Checklist:

Secure Your
C/C++ Codebases

UNDERSTAND THE RISKS

e Buffer Overflows

e Use-After-Free Errors
e Dangling Pointers

e Memory Leaks

USE MEMORY-SAFE
COMPILER OPTIONS

e Enable stack canaries

e Use address sanitizers

e Enable bounds checking and control-flow
protections

ADOPT SAFE CODING
PRACTICES

</> e Avoid unsafe functions
e Validate all inputs and array bounds

e Conduct manual code reviews
e Use trusted libraries only

APPLY STATIC AND
DYNAMIC ANALYSIS TOOLS

o Use static analyzers

e Run dynamic analysis tools

e Regularly scan for memory leaks, buffer
overflows, and use-after-free bugs

SECURE NEW AND

LEGACY CODE
(WITHOUT CODE REWRITES)

e Apply Runtime Protections

o Control Flow Integrity (CFI)

o Load-time Function Randomization (LFR)
e Patch Regularly

o Prioritize by CVSS scores

AUTOMATE SECURITY

TESTING IN CI/CD N
e Embed fuzz testing in your pipelines @ @
e Run regression and memory safety tests ‘

with every commit
e Monitor for new CVEs relevant to your
dependencies

USE MEMORY SAFE
LIBRARIES WHERE POSSIBLE

e Swap out risky modules for memory safe
alternatives (Rust FFI, hardened libc)

o Adopt well-maintained, vetted open-
source components

RESPOND TO
VULNERABILITIES QUICKLY

e Patch fast, especially for known memory
corruption flaws

e Use runtime protection tools to mitigate
exploit windows

PLAN FOR THE FUTURE

e Selective Rewriting in Rust or Go
» Focus on critical components
e Write a Memory Safety Roadmap
» Follow CISA’s Secure by Design guidance

LEARN MORE


https://runsafesecurity.com/platform/protect/

