
UNDERSTAND THE RISKS

ADOPT SAFE CODING
PRACTICES

USE MEMORY SAFE
LIBRARIES WHERE POSSIBLE

PLAN FOR THE FUTURE

SECURE NEW AND
LEGACY CODE
(WITHOUT CODE REWRITES)

Buffer Overflows
Use-After-Free Errors
Dangling Pointers
Memory Leaks

Avoid unsafe functions
Validate all inputs and array bounds
Conduct manual code reviews
Use trusted libraries only

Swap out risky modules for memory safe
alternatives (Rust FFI, hardened libc)
Adopt well-maintained, vetted open-
source components

Selective Rewriting in Rust or Go
 ▸ Focus on critical components

Write a Memory Safety Roadmap
 ▸ Follow CISA’s Secure by Design guidance

Apply Runtime Protections
Control Flow Integrity (CFI)
Load-time Function Randomization (LFR)

Patch Regularly
Prioritize by CVSS scores

Memory
Safety
Checklist:
Secure Your
C/C++ Codebases

USE MEMORY-SAFE
COMPILER OPTIONS

APPLY STATIC AND
DYNAMIC ANALYSIS TOOLS

RESPOND TO
VULNERABILITIES QUICKLY

AUTOMATE SECURITY
TESTING IN CI/CD

Enable stack canaries
Use address sanitizers
Enable bounds checking and control-flow
protections

Use static analyzers
Run dynamic analysis tools
Regularly scan for memory leaks, buffer
overflows, and use-after-free bugs

Patch fast, especially for known memory
corruption flaws
Use runtime protection tools to mitigate
exploit windows

Embed fuzz testing in your pipelines
Run regression and memory safety tests
with every commit
Monitor for new CVEs relevant to your
dependencies

BE PROACTIVE ABOUT MEMORY SAFETY

LEARN MORE

Reduce risk in embedded devices and critical systems written in
C/C++. Explore tools like RunSafe Protect to harden code

against memory safety vulnerabilities with no rewrites required.

https://runsafesecurity.com/platform/protect/

